Blog: Birds In Mud

Funding Neglect Kills Museums: #MuseuNacional Fire Was A Preventable Tragedy

I am at a loss for words today. Late Sunday night (in my time zone) I started seeing tweets on the devastating fire at the Museu Nacional in Rio de Janeiro. This is Brazil’s oldest scientific institution, founded in 1818, and is the largest scientific repository for historical, biological, geological, and palaeontological specimens in the country. The fire reportedly happened after hours, and no one was killed or injured (at least no injuries have been reported). Firefighters were reportedly dispatched at 7:30 pm. What we did see on Twitter were images of people trying to get as many specimens out of the inferno as safely possible: they are not my images to post, but I will link to the tweet where I saw them here:

The collections that were impacted by the fire were the palaeontology specimens – including South America’s oldest human fossil, Luzia, the invertebrate specimens (insects and relatives), historical royal documents, and the country’s largest Egyptology collection. The herbarium, library, and fish and reptile collections may have been spared as they are housed separately. Indigenous knowledge is likely now lost, as the collection held audio records of languages that are not now spoken.

We are unsure at this time how many of the metal cabinets were able to withstand the intense heat of a fire this size: there is a slim chance that some specimens that could not be hand-carried by soul-sick museum staff, volunteers, firefighters, and soldiers may still be intact. We will know more when they sift through the torched remains of scientific and historical memory.

How Did This Happen?

The tl;dr version is lack of secure, stable operational funding. The Deputy Director of Museu Nacional, Luis Fernando Dias Duarte, describes in an interview with media how they Museu Nacional fought to receive adequate funding for the internationally important work of this institution. From a BBC news article:

“We fought years ago, in different governments, to obtain resources to adequately preserve everything that was destroyed today.”

There is now a public outcry regarding the neglect of government bodies towards the Museu Nacional and the operational funding, but it’s too late once the specimens and the building have been lost to a preventable event. The museum staff and scientists have been trying to raise awareness of the lack of funding for the Museu Nacional for years. Also quoted from the Deputy Director in The Guardian:

“For many years we fought with different governments to get adequate resources to preserve what is now completely destroyed,” he said. “My feeling is of total dismay and immense anger.”

What amounts of money are we talking about anyway? It is a frustratingly small amount. The Museu Nacional is supposed to receive $128,000 annually for its operations, but since 2014 it has not received the full amount. National Geographic reports that in 2018 the Museu Nacional received a grand total of…wait for it…$13,000, and had to temporarily close its doors.

That is just for the operational costs. Operations refer to day-to-day activities of a museum: paying staff, heating, lights, and general maintenance and cleaning. Operational expenses do not cover the capital upgrades and renovations that a historic building (it was once the royal court in 1808) such as the Museu Nacional needs to keep staff and specimens safe. Capital projects refer to large targeted projects and major equipment. Major renovation projects that needed to be crowdfunded (that should have been paid for by the state and national government) include damage done by termites to the museum’s major dinosaur exhibit. There was a modernization plan in place that would have addressed the fire prevention system as well as other necessities, but that plan was not to take place until after October elections. The firefighters could only work with what they had available, and that was water from a nearby lake. They did all they could. Politics delayed a plan that would have prevented this tragedy.

But now it is too late. How much will it now cost to just repair the structure? How much will it cost to replace the archival equipment? We can’t ask “How much will it cost to replace the lost specimens” because WE CANNOT REPLACE THE LOST SPECIMENS. Many of those specimens include type specimens: that means they are the first and best example of an organism. They are the specimen that contains all of the information we need to study these organisms. Once you lose those, you lose the source of that knowledge. How do you replace that? How do you replace the years, decades, centuries of work that went into investigating those specimens? How do you replace the careers that are built on those specimens?

These specimens represent 200 years of Brazil’s history. Two hundred years of dedicated work by Brazil’s scientists, students, museum professionals, and volunteers. Two hundred years of accumulated knowledge that helped us better understand our place as humans in this great complex world. We can’t replace that.

A Wake-Up Call To The Funders of the World’s Museums

Brazilain President Michel Tremer has directed the museum be rebuilt using public and private funds. As Dias Duarte is quoted in The Telegraph: “Everybody wants to be supportive now. We never had adequate support.”

Where was this government-level concern when the tragedy could have been prevented by ensuring the Museu Nacional received enough funding to have their systems upgraded early on? Note: $128,000 is a paltry amount of money for a museum operating budget. A museum of this stature should have an annual operating budget of millions, not thousands, for its staff to properly care for priceless heritage.

Where was the government-level concern when the museum only received $13,000 this year and had to close its doors? That alone should have been a wake-up call for funders that the Museu Nacional was struggling, but it wasn’t enough.

Where was the government-level concern when the Museu Nacional had to crowdfund the repairs for the palaeontology exhibit?

Where was the government-level concern when, for years, the personnel of the Museu Nacional tried to secure government funds?

The main reason the government (which consistently neglected the Museu Nacional) made such a statement of rebuilding using public and private funds is that this a highly visible tragedy. A government can easily ignore a group of museum professionals and scientists when they ask for needed funds. Those asks are often done quietly, through “the proper channels,” as it were. These asks are done with the idea in mind that the scientists and museum professionals will be painted as trying to manipulate the government into giving them money if they make the ask publicly-known. Publicly revealing requests to government is framed by the recipients as blackmail and unwarranted pressure. So museums ask politely. Museums wait patiently. Museums continue to publicly thank the government for whatever inadequate funding they receive. Sometimes government officials suggest going after private donations instead of asking the government to help care for its heritage: private or industrial funding isn’t common, and it puts the responsibility on museums already stretched to their limits. Museums continue to limp along on shoestring budgets, expected to deliver programs while being simultaneously starved.

This is not the only museum, not the only home of irreplaceable and invaluable history and heritage, that has been gutted by short-sighted neglect and the consequential preventable tragedy.  The Natural History Museum in New Delhi lost its entire collection to a fire in 2016. The fire suppression system was out of order, and the museum was already known to be inadequately maintained (which requires money.) The Butantan Institute (Sao Paulo) collections, which housed snake, scorpion, and spider specimens used for vaccines and medical research, were gutted by a fire in 2010. The archive was not equipped with a fire suppression system (which requires money).

If you read the news articles regarding these great losses, you’ll see official government quotes that express sadness for the loss of irreplaceable heritage and what a loss it is to the country and the world, etcetera, etcetera. Those sentiments tend to ring hollow in the ears of those who fought for years to maintain bare minimum funding from these same governments, only to be rebuked or ignored.

Government and private funders of museums need to learn these valuable lessons from the Museu Nacional tragedy:

  1. Many museum specimens cannot be replaced once they are destroyed. If the destruction was preventable, funders bear the responsibility of that loss to the world. That is bad optics. Even if funders do not care a sniff over the heritage lost, they should care about how the public and the world perceives the inaction that leads to these tragedies.
  2. It is less expensive to properly fund a museum in the long-term than it is to repair and rebuild after a preventable tragedy. An ounce of prevention is worth more than a pound of cure.
  3. A properly funded museum is a public relations asset that can either work in a government’s favor. A poorly funded museum will display the government’s inadequacies. VIPs touring the museum will look with a critical eye at the water-stained ceiling tiles, the old computers in offices, and the outdated lighting fixtures. They will see the strain in the eyes of museum personnel who have stretched themselves to the limit to keep that museum running on fumes.

I completely trust the professionals at the Museu Nacional when they say they have fought for years for adequate support. I trust them because they are the professionals at that museum, and fought for years for it to succeed in spite of (not thanks to) the funding they received. I trust the professionals at the Museu Nacional because I too am a museum professional. I have been involved with running a natural history museum on inadequate funding for fourteen years, and I am familiar with the stress and the strain, the blood, sweat, and tears one pours into a museum to keep it running. To think that museum professionals don’t know – and I mean intimately know – exactly what it takes to maintain and upgrade that institution is ridiculous. Their dedication, time, love, and devotion to caring for those now-lost specimens as best as they could was disrespected beyond measure each time they were ignored, dismissed, or delayed. Museum professionals are not trying to scam money for expensive personal vacations: they are worried sick about the specimens.

An organization, government or otherwise, cannot claim to care for or respect their heritage if they are not doing the utmost to properly care for that heritage. Doing the utmost requires providing stable, adequate, long-term operational funding. It requires acting quickly to help a museum upgrade old systems (wiring, fire suppression, etc.) It requires respecting the museum professionals enough to recognize that they are tasked with an internationally important responsibility of being stewards of irreplaceable heritage.

The Museu Nacional will continue, and hopefully now with the funding that it needed all along. We need to ensure that other museums that are currently struggling to keep the lights on and care for their heritage receive the support they deserve…before tragedy strikes.

Re-Post of Introducing Paxavipes!

Originally posted on 12 March 2015 on http://birdsinmud.blogspot.com/2015/03/early-bird-tracks-in-british-columbia.html

Hello, Dear Readers!

It’s been a while since I’ve dusted off the Blog: it’s been a stressful time for the Strange Woman, and while Tolkien made the apt observation that harrowing tales make the best stories (The Hobbit), I’m bored of thinking about it, and would much rather talk about paleontology! Our research group had a fun time publishing on my favorite subject: BIRDS! Specifically, we have a recent paper in Cretaceous Research on a new avian ichnotaxon (footprint type) from the Peace Region of British Columbia!

Please join me in welcoming Paxavipes (Peace bird footprint, in reference to the Peace Region) babcockensis (in reference to Mount Babcock, the mountain on which the specimen was discovered) to the ichnological family! OK, that’s not taxonomically accurate, as Paxavipes is also part of a new ichnofamily. Bear with me.

Bird tracks have been known from British Columbia, and specifically the Peace Region, since their scientific debut in 1981 with Aquatilavipes swiboldae (Currie, 1981). This specimen was recovered as part of the salvage and study operation performed by the then Provincial Museum of Alberta before the completion of the Peace Canyon hydroelectric dam. The area was so well-known for its palaeontological heritage that it was officially designated a Provincial Historic Resource in the 1930s. Today you would need gills and fins (and a whole bunch of de-silting equipment) to see these localities, as they are now underneath what is known as Dinosaur Lake. The type slab for Aquatilavipes swiboldae now resides in the Royal Tyrrell Museum of Palaeontology (RTMP). At the time of its scientific write-up, it was the earliest known bird track type, being from Gething Formation deposits that are Lower Cretaceous (Aptian, approximately 125 – 113 million years old). Since then, no bird footprints have been published on from British Columbia…until now.

The rock slab on which Paxavipes are preserved was discovered in 2005 by a (then) doctoral student Curtis Lettely (University of Alberta). The slab was discovered in an area locally called The Boulder Gardens. The Boulder Gardens is series of hiking trails leading outdoor adventurers through a gorgeous sup-alpine terrain of visually stunning sandstone erosional features. Check out more information on the PDF here. Boulder Gardens is within the boundaries of the newly established Tumbler Ridge Global Geopark. The Boulder Gardens showcases rock from the Boulder Creek Formation, which is Early Cretaceous (middle-upper Albian, approximately 100 to 105 million years old.)

This was an interesting slab. The rock slab was found vertically embedded in eroded rubble and dirt, and what was exposed was covered in many lichen colonies. Lichen is hard, crusty, and hides any surface details it covers. We could see that there were small theropod footprints (Irenichnites-looking prints), and a few visible bird footprints, but did not know how many prints were preserved on the surface, or anything detailed about their shape, with all of that crusty lichen. That lichen had to go…

Fig. 2 of PRPRC 2005.001.015 from Buckley and McCrea (2009). It’s easy to see which part of the slab was exposed for lichen colonization.

…but carefully. Lichen is a resistant organism – what else can you expect when fungi and cyanobacteria form an alliance (symbiotic relationship)? Mechanically scraping off the lichen was not an option, as that would have risked mechanically scraping the track surface and the prints it preserved. After trying out a few different chemicals, we saw that a dilute bleach solution effective at breaking down the lichen to a point where it could be gently brushed away with a soft toothbrush. The technique worked so well that it became the topic of my first first-author publication (Buckley and McCrea, 2009).

Once the lichen was removed, the surface was revealed…and what a reveal! A grand total of 72 bird footprints were visible, which enabled us to make out five trackways – series of footprints made by one bird walking from Point A to B. Single footprints are like an isolated bone or tooth – they give us good information, but not as much as a whole skeleton does. Trackways are like the whole skeleton.

Fig. 4 from Buckley and McCrea (2009) So many bird footprints were visible once the lichen was removed!

Another cool “after lichen” reveal was that the small theropod footprints had tiny skin impressions on them! Check out the teeny tiny pebbly texture:

Fig. 6 from McCrea et al. (2015). Skin impressions such as these give us a good idea of what the soles of dinosaurs’ feet looked like. These tubercles likely acted like the treads on our running shoes.

Back to the birds. Since we have trackways, we could tell left footprints from right footprints, but not easily. There was something odd with these particular bird footprints. The usual case for bird footprints is that the outer toe is much more splayed away from the middle toe than is the inner toe (or the toes have a roughly equal amount of splay). These footprints were strange in that the inner toe was more splayed than the outer toe. It wasn’t just one or two footprints out the 72: it was the majority of the prints.

Fig. 4 from McCrea et al. (2015) showing the holotype trackway – see the wider splay between the inner digits?

Something was up. There is a bit of natural side-to-side wiggle potential in bird toes, and modern bird footprints can show a big differences in toe splay (70 degrees to 140 degrees between the outer digits), but a consistently larger splay between the inner (digit II) toe and the middle (digit III) toe is not common in Cretaceous avian bird footprints. The only other bird footprint type that shows this toe arrangement is Barrosopus slobodai (Coria et al. 2002) from the Late Cretaceous of Argentina. Because these two footprint types are unique when compared to all other Mesozoic bird footprints (but different enough to still be considered separate footprint types), we formed a new ichno (footprint) family of bird prints called the Paxavipedidae. Any new three-toed bird footprint (no hallux) with consistently wider splay between digits II and II than between digits III and IV and thick digits can be assigned to this new footprint family.

As an ichnologist, when I see a repeated footprint shape or toe arrangement within all that natural variation, I begin to think about the shape of the foot. Specifically, I think about the features of the skeleton that made that footprint shape possible. Looking at modern birds, Paxavipes and Barrosopus prints are very close in shape to footprints of the Killdeer (Charadrius vociferus).

I love this image by Ryan Hodnett, found on Wikipedia. No, Killdeer are not some strange Octo-Bird: those are young Killdeer hiding under the parent.

Looking at the foot bones of a Killdeer (welcome to my thesis!), the end of the metatarsals (the lower part of the “leg” of the birds that you see hiding in the above image) are shaped in such a way that the inner toe (when attached) is going to be more splayed than the outer toe! Footprints may not always match the skeletons of feet perfectly, since living feet are covered with skin and muscle. In some cases, like with two-toed dromaeosaur trackways, there are features of the animal’s skeleton that are expressed in the footprints. When we find these features, we have a good chance of predicting what the skeletal foot of these track-makers would look like. We haven’t yet found the track-maker for Paxavipes, but we have a good chance of recognizing it when (if) it is found! [NOTE: This doesn’t mean that Killdeer were around in the Early Cretaceous: this means that a bird with a foot shape that resembles a foot of a Killdeer was around in the Cretaceous.]

Next time you are walking along a beach and see little brown and white shorebirds skittering along the edge of the water looking for yummy invertebrates, think about a Cretaceous shoreline: you would likely notice the dinosaurs first, but the small shorebirds still made quite an impression!

References:

Buckley LG, McCrea RT. 2009. The sodium hypochlorite solution for the removal of lichen from vertebrate track surfaces. Ichnos 16(3):230-234.

Coria RA, Currie PJ, Eberth D, Garrido A. 2002. Bird footprints from the Anacleto

Formation (Late Cretaceous), Neuqu en, Argentina. Ameghiniana 39(4):453-463.

Currie PJ. 1981. Bird footprints from the Gething Formation (Aptian, Lower Cretaceous) of northeastern British Columbia, Canada. Journal of Vertebrate Paleontology 1(3-4):257-264.

McCrea RT, Buckley LG, Plint AG, Lockley MG, Matthews NA, Noble TA, Xing L, Krawetz J. 2015. Vertebrate ichnites from the Boulder Creek Formation (Lower Cretaceous: middle to ?upper Albian) of northeastern British Columbia, with a description of a new avian ichnotaxon, Paxavipes babcockensis ichnogen. et isp. nov. Cretaceous Research 55:1-18.

Vertebrate Paleontology: Our Shared Heritage

I am a vertebrate paleontologist who specializes in research and conservation of Cretaceous-age footprints of dinosaurs, birds, and other extinct life. I have over a decade’s worth of experience in principal field investigations, research and survey management, fossil heritage conservation and curation, and public engagement.

Contact me for:

  • Paleontology/fossil heritage impact assessments; consulting and execution
  • Lectures and presentations
  • Professional development for K-12 curricula